Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Front Immunol ; 13: 815828, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493491

RESUMO

Mass cytometry has revolutionized immunophenotyping, particularly in exploratory settings where simultaneous breadth and depth of characterization of immune populations is needed with limited samples such as in preclinical and clinical tumor immunotherapy. Mass cytometry is also a powerful tool for single-cell immunological assays, especially for complex and simultaneous characterization of diverse intratumoral immune subsets or immunotherapeutic cell populations. Through the elimination of spectral overlap seen in optical flow cytometry by replacement of fluorescent labels with metal isotopes, mass cytometry allows, on average, robust analysis of 60 individual parameters simultaneously. This is, however, associated with significantly increased complexity in the design, execution, and interpretation of mass cytometry experiments. To address the key pitfalls associated with the fragmentation, complexity, and analysis of data in mass cytometry for immunologists who are novices to these techniques, we have developed a comprehensive resource guide. Included in this review are experiment and panel design, antibody conjugations, sample staining, sample acquisition, and data pre-processing and analysis. Where feasible multiple resources for the same process are compared, allowing researchers experienced in flow cytometry but with minimal mass cytometry expertise to develop a data-driven and streamlined project workflow. It is our hope that this manuscript will prove a useful resource for both beginning and advanced users of mass cytometry.


Assuntos
Anticorpos , Análise de Célula Única , Citometria de Fluxo/métodos , Imunofenotipagem , Análise de Célula Única/métodos , Coloração e Rotulagem
2.
Cytotherapy ; 22(5): 276-290, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32238299

RESUMO

BACKGROUND AIMS: Key obstacles in human iNKT cell translational research and immunotherapy include the lack of robust protocols for dependable expansion of human iNKT cells and the paucity of data on phenotypes in post-expanded cells. METHODS: We delineate expansion methods using interleukin (IL)-2, IL-7 and allogeneic feeder cells and anti-CD2/CD3/CD28 stimulation by which to dependably augment Th2 polarization and direct cytotoxicity of human peripheral blood CD3+Vα24+Vß11+ iNKT cells. RESULTS: Gene and protein expression profiling demonstrated augmented Th2 cytokine secretion (IL-4, IL-5, IL-13) in expanded iNKT cells stimulated with anti-CD2/CD3/CD28 antibodies. Cytotoxic effector molecules including granzyme B were increased in expanded iNKT cells after CD2/CD3/CD28 stimulation. Direct cytotoxicity assays using unstimulated expanded iNKT cell effectors revealed α-galactosyl ceramide (α-GalCer)-dependent killing of the T-ALL cell line Jurkat. Moreover, CD2/CD3/CD28 stimulation of expanded iNKT cells augmented their (α-GalCer-independent) killing of Jurkat cells. Co-culture of expanded iNKT cells with stimulated responder cells confirmed contact-dependent inhibition of activated CD4+ and CD8+ responder T cells. DISCUSSION: These data establish a robust protocol to expand and novel pathways to enhance Th2 cytokine secretion and direct cytotoxicity in human iNKT cells, findings with direct implications for autoimmunity, vaccine augmentation and anti-infective immunity, cancer immunotherapy and transplantation.


Assuntos
Antígenos CD2/imunologia , Antígenos CD28/imunologia , Complexo CD3/imunologia , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Células T Matadoras Naturais/imunologia , Células Th2/imunologia , Anticorpos/farmacologia , Apoptose/efeitos dos fármacos , Doadores de Sangue , Transplante de Células/métodos , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Imunoterapia/métodos , Células Jurkat , Células K562 , Ativação Linfocitária/imunologia
3.
J Vis Exp ; (151)2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31609324

RESUMO

The intestine is the home to the largest number of immune cells in the body. The small and large intestinal immune systems police exposure to exogenous antigens and modulate responses to potent microbially derived immune stimuli. For this reason, the intestine is a major target site of immune dysregulation and inflammation in many diseases including but, not limited to inflammatory bowel diseases such as Crohn's disease and ulcerative colitis, graft-versus-host disease (GVHD) after bone marrow transplantation (BMT), and many allergic and infectious conditions. Murine models of gastrointestinal inflammation and colitis are heavily used to study GI complications and to pre-clinically optimize strategies for prevention and treatment. Data gleaned from these models via isolation and phenotypic analysis of immune cells from the intestine is critical to further immune understanding that can be applied to ameliorate gastrointestinal and systemic inflammatory disorders. This report describes a highly effective protocol for the isolation of mononuclear cells (MNC) from the colon using a mixed silica-based density gradient interface. This method reproducibly isolates a significant number of viable leukocytes while minimizing contaminating debris, allowing subsequent immune phenotyping by flow cytometry or other methods.


Assuntos
Colagenases/metabolismo , Colo/citologia , Mucosa Intestinal/citologia , Leucócitos/citologia , Animais , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
4.
Annu Rev Immunol ; 37: 439-456, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31026415

RESUMO

Monocytes are innate blood cells that maintain vascular homeostasis and are early responders to pathogens in acute infections. There are three well-characterized classes of monocytes: classical (CD14+CD16- in humans and Ly6Chi in mice), intermediate (CD14+CD16+ in humans and Ly6C+Treml4+ in mice), and nonclassical (CD14-CD16+ in humans and Ly6Clo in mice). Classical monocytes are critical for the initial inflammatory response. Classical monocytes can differentiate into macrophages in tissue and can contribute to chronic disease. Nonclassical monocytes have been widely viewed as anti-inflammatory, as they maintain vascular homeostasis. They are a first line of defense in recognition and clearance of pathogens. However, their roles in chronic disease are less clear. They have been shown to be protective as well as positively associated with disease burden. This review focuses on the state of the monocyte biology field and the functions of monocytes, particularly nonclassical monocytes, in health and disease.


Assuntos
Artrite Reumatoide/imunologia , Aterosclerose/imunologia , Vasos Sanguíneos/fisiologia , Monócitos/imunologia , Infarto do Miocárdio/imunologia , Animais , Autoimunidade , Hematopoese , Homeostase , Humanos , Inflamação , Camundongos
5.
Arterioscler Thromb Vasc Biol ; 39(1): 25-36, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30580568

RESUMO

Objective- Three distinct human monocyte subsets have been identified based on the surface marker expression of CD14 and CD16. We hypothesized that monocytes were likely more heterogeneous in composition. Approach and Results- We used the high dimensionality of mass cytometry together with the FlowSOM clustering algorithm to accurately identify and define monocyte subsets in blood of healthy human subjects and those with coronary artery disease (CAD). To study the behavior and functionality of the newly defined monocyte subsets, we performed RNA sequencing, transwell migration, and efferocytosis assays. Here, we identify 8 human monocyte subsets based on their surface marker phenotype. We found that 3 of these subsets fall within the CD16+ nonclassical monocyte population and 4 subsets belong to the CD14+ classical monocytes, illustrating significant monocyte heterogeneity in humans. As nonclassical monocytes are important in modulating atherosclerosis in mice, we studied the functions of our 3 newly identified nonclassical monocytes in subjects with CAD. We found a marked expansion of a Slan+CXCR6+ nonclassical monocyte subset in CAD subjects, which was positively correlated with CAD severity. This nonclassical subset can migrate towards CXCL16 and shows an increased efferocytosis capacity, indicating it may play an atheroprotective role. Conclusions- Our data demonstrate that human nonclassical monocytes are a heterogeneous population, existing of several subsets with functional differences. These subsets have changed frequencies in the setting of severe CAD. Understanding how these newly identified subsets modulate CAD will be important for CAD-based therapies that target myeloid cells.


Assuntos
Citometria de Fluxo/métodos , Monócitos/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Aterosclerose/etiologia , Movimento Celular , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/etiologia , Humanos , Receptores de Lipopolissacarídeos/análise , Camundongos , Pessoa de Meia-Idade , Monócitos/imunologia , Receptores de IgG/análise
6.
OBM Transplant ; 3(1)2019.
Artigo em Inglês | MEDLINE | ID: mdl-33511333

RESUMO

The success of tissue transplantation from a healthy donor to a diseased individual (allo-transplantation) is regulated by the immune systems of both donor and recipient. Developing a state of specific non-reactivity between donor and recipient, while maintaining the salutary effects of immune function in the recipient, is called "immune (transplantation) tolerance". In the classic early post-transplant period, minimizing bidirectional donor ←→ recipient reactivity requires the administration of immunosuppressive drugs, which have deleterious side effects (severe immunodeficiency, opportunistic infections, and neoplasia, in addition to drug-specific reactions and organ toxicities). Inducing immune tolerance directly through donor and recipient immune cells, particularly via subsets of immune regulatory cells, has helped to significantly reduce side effects associated with multiple immunosuppressive drugs after allo-transplantation. The innate and adaptive arms of the immune system are both implicated in inducing immune tolerance. In the present article, we will review innate immune subset manipulations and their potential applications in hematopoietic stem cell transplantation (HSCT) to cure malignant and non-malignant hematological disorders by inducing long-lasting donor ←→ recipient (bidirectional) immune tolerance and reduced graft-versus-host disease (GVHD). These innate immunotherapeutic strategies to promote long-term immune allo-transplant tolerance include myeloid-derived suppressor cells (MDSCs), regulatory macrophages, tolerogenic dendritic cells (tDCs), Natural Killer (NK) cells, invariant Natural Killer T (iNKT) cells, gamma delta T (γδ-T) cells and mesenchymal stromal cells (MSCs).

7.
Sci Immunol ; 3(29)2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389801

RESUMO

Glycolytic metabolism functions as a backup mechanism for M2 macrophage polarization when oxidative phosphorylation is disrupted.

8.
J Biol Chem ; 293(39): 15070-15083, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30111591

RESUMO

Gene targeting via homologous recombination can occasionally result in incomplete disruption of the targeted gene. Here, we show that a widely used Nur77-deficient transgenic mouse model expresses a truncated protein encoding for part of the N-terminal domain of nuclear receptor Nur77. This truncated Nur77 protein is absent in a newly developed Nur77-deficient mouse strain generated using Cre-Lox recombination. Comparison of these two mouse strains using immunohistochemistry, flow cytometry, and colony-forming assays shows that homologous recombination-derived Nur77-deficient mice, but not WT or Cre-Lox-derived Nur77-deficient mice, suffer from liver immune cell infiltrates, loss of splenic architecture, and increased numbers of bone marrow hematopoietic stem cells and splenic colony-forming cells with age. Mechanistically, we demonstrate that the truncated Nur77 N-terminal domain protein maintains the stability and activity of hypoxia-inducible factor (HIF)-1, a transcription factor known to regulate bone marrow homeostasis. Additionally, a previously discovered, but uncharacterized, human Nur77 transcript variant that encodes solely for its N-terminal domain, designated TR3ß, can also stabilize and activate HIF-1α. Meta-analysis of publicly available microarray data sets shows that TR3ß is highly expressed in human bone marrow cells and acute myeloid leukemia samples. In conclusion, our study provides evidence that a transgenic mouse model commonly used to study the biological function of Nur77 has several major drawbacks, while simultaneously identifying the importance of nongenomic Nur77 activity in the regulation of bone marrow homeostasis.


Assuntos
Células da Medula Óssea/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Domínios Proteicos/genética , Animais , Medula Óssea/metabolismo , Medula Óssea/patologia , Citometria de Fluxo , Regulação da Expressão Gênica/genética , Homeostase/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Camundongos , Camundongos Transgênicos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/química
9.
Circ Res ; 122(12): 1675-1688, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29545366

RESUMO

RATIONALE: Atherosclerosis is a chronic inflammatory disease that is driven by the interplay of pro- and anti-inflammatory leukocytes in the aorta. Yet, the phenotypic and transcriptional diversity of aortic leukocytes is poorly understood. OBJECTIVE: We characterized leukocytes from healthy and atherosclerotic mouse aortas in-depth by single-cell RNA-sequencing and mass cytometry (cytometry by time of flight) to define an atlas of the immune cell landscape in atherosclerosis. METHODS AND RESULTS: Using single-cell RNA-sequencing of aortic leukocytes from chow diet- and Western diet-fed Apoe-/- and Ldlr-/- mice, we detected 11 principal leukocyte clusters with distinct phenotypic and spatial characteristics while the cellular repertoire in healthy aortas was less diverse. Gene set enrichment analysis on the single-cell level established that multiple pathways, such as for lipid metabolism, proliferation, and cytokine secretion, were confined to particular leukocyte clusters. Leukocyte populations were differentially regulated in atherosclerotic Apoe-/- and Ldlr-/- mice. We confirmed the phenotypic diversity of these clusters with a novel mass cytometry 35-marker panel with metal-labeled antibodies and conventional flow cytometry. Cell populations retrieved by these protein-based approaches were highly correlated to transcriptionally defined clusters. In an integrated screening strategy of single-cell RNA-sequencing, mass cytometry, and fluorescence-activated cell sorting, we detected 3 principal B-cell subsets with alterations in surface markers, functional pathways, and in vitro cytokine secretion. Leukocyte cluster gene signatures revealed leukocyte frequencies in 126 human plaques by a genetic deconvolution strategy. This approach revealed that human carotid plaques and microdissected mouse plaques were mostly populated by macrophages, T-cells, and monocytes. In addition, the frequency of genetically defined leukocyte populations in carotid plaques predicted cardiovascular events in patients. CONCLUSIONS: The definition of leukocyte diversity by high-dimensional analyses enables a fine-grained analysis of aortic leukocyte subsets, reveals new immunologic mechanisms and cell-type-specific pathways, and establishes a functional relevance for lesional leukocytes in human atherosclerosis.


Assuntos
Doenças da Aorta/patologia , Aterosclerose/patologia , Leucócitos/patologia , Análise de Sequência de RNA/métodos , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Linfócitos B/patologia , Citometria de Fluxo/métodos , Humanos , Leucócitos/metabolismo , Macrófagos/patologia , Ilustração Médica , Camundongos , Monócitos/patologia , Fenótipo , Receptores de LDL/deficiência , Receptores de LDL/genética , Análise de Célula Única/métodos , Linfócitos T/patologia , Transcriptoma
10.
Arterioscler Thromb Vasc Biol ; 37(8): 1548-1558, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28596372

RESUMO

OBJECTIVE: Human monocyte subsets are defined as classical (CD14++CD16-), intermediate (CD14++CD16+), and nonclassical (CD14+CD16+). Alterations in monocyte subset frequencies are associated with clinical outcomes, including cardiovascular disease, in which circulating intermediate monocytes independently predict cardiovascular events. However, delineating mechanisms of monocyte function is hampered by inconsistent results among studies. APPROACH AND RESULTS: We use cytometry by time-of-flight mass cytometry to profile human monocytes using a panel of 36 cell surface markers. Using the dimensionality reduction approach visual interactive stochastic neighbor embedding (viSNE), we define monocytes by incorporating all cell surface markers simultaneously. Using viSNE, we find that although classical monocytes are defined with high purity using CD14 and CD16, intermediate and nonclassical monocytes defined using CD14 and CD16 alone are frequently contaminated, with average intermediate and nonclassical monocyte purity of ≈86.0% and 87.2%, respectively. To improve the monocyte purity, we devised a new gating scheme that takes advantage of the shared coexpression of cell surface markers on each subset. In addition to CD14 and CD16, CCR2, CD36, HLA-DR, and CD11c are the most informative markers that discriminate among the 3 monocyte populations. Using these additional markers as filters, our revised gating scheme increases the purity of both intermediate and nonclassical monocyte subsets to 98.8% and 99.1%, respectively. We demonstrate the use of this new gating scheme using conventional flow cytometry of peripheral blood mononuclear cells from subjects with cardiovascular disease. CONCLUSIONS: Using cytometry by time-of-flight mass cytometry, we have identified a small panel of surface markers that can significantly improve monocyte subset identification and purity in flow cytometry. Such a revised gating scheme will be useful for clinical studies of monocyte function in human cardiovascular disease.


Assuntos
Biomarcadores/sangue , Separação Celular/métodos , Doença da Artéria Coronariana/sangue , Citometria de Fluxo/métodos , Monócitos/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígeno CD11c/sangue , Antígenos CD36/sangue , Estudos de Casos e Controles , Angiografia Coronária , Doença da Artéria Coronariana/diagnóstico por imagem , Feminino , Proteínas Ligadas por GPI/sangue , Antígenos HLA-DR/sangue , Humanos , Receptores de Lipopolissacarídeos/sangue , Masculino , Pessoa de Meia-Idade , Monócitos/classificação , Fenótipo , Valor Preditivo dos Testes , Receptores CCR2/sangue , Receptores de IgG/sangue , Reprodutibilidade dos Testes
11.
PLoS One ; 11(11): e0164690, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27820817

RESUMO

Studies on the role of B lymphocytes in atherosclerosis development, have yielded contradictory results. Whereas B lymphocyte-deficiency aggravates atherosclerosis in mice; depletion of mature B lymphocytes reduces atherosclerosis. These observations led to the notion that distinct B lymphocyte subsets have different roles. B1a lymphocytes exert an atheroprotective effect, which has been attributed to secretion of IgM, which can be deposited in atherosclerotic lesions thereby reducing necrotic core formation. Tumor necrosis factor (TNF)-family member 'A Proliferation-Inducing Ligand' (APRIL, also known as TNFSF13) was previously shown to increase serum IgM levels in a murine model. In this study, we investigated the effect of APRIL overexpression on advanced lesion formation and composition, IgM production and B cell phenotype. We crossed APRIL transgenic (APRIL-Tg) mice with ApoE knockout (ApoE-/-) mice. After a 12-week Western Type Diet, ApoE-/-APRIL-Tg mice and ApoE-/- littermates showed similar increases in body weight and lipid levels. Histologic evaluation showed no differences in lesion size, stage or necrotic area. However, smooth muscle cell (α-actin stain) content was increased in ApoE-/-APRIL-Tg mice, implying more stable lesions. In addition, increases in both plaque IgM deposition and plasma IgM levels were found in ApoE-/-APRIL-Tg mice compared with ApoE-/- mice. Flow cytometry revealed a concomitant increase in peritoneal B1a lymphocytes in ApoE-/-APRIL-Tg mice. This study shows that ApoE-/-APRIL-Tg mice have increased oxLDL-specific serum IgM levels, potentially mediated via an increase in B1a lymphocytes. Although no differences in lesion size were found, transgenic ApoE-/-APRIL-Tg mice do show potential plaque stabilizing features in advanced atherosclerotic lesions.


Assuntos
Placa Aterosclerótica/imunologia , Placa Aterosclerótica/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Animais , Contagem de Células , Expressão Ectópica do Gene , Humanos , Imunoglobulina M/sangue , Camundongos , Miócitos de Músculo Liso/patologia , Peritônio/imunologia , Placa Aterosclerótica/sangue , Placa Aterosclerótica/patologia , Linfócitos T/citologia , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
12.
Vascul Pharmacol ; 82: 51-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27189780

RESUMO

BACKGROUND: Macrophages play a central role in atherosclerosis development and progression, hence, targeting macrophage activity is considered an attractive therapeutic. Recently, we documented nanomedicinal delivery of the anti-inflammatory compound prednisolone to atherosclerotic plaque macrophages in patients, which did however not translate into therapeutic efficacy. This unanticipated finding calls for in-depth screening of drugs intended for targeting plaque macrophages. METHODS AND RESULTS: We evaluated the effect of several candidate drugs on macrophage activity, rating overall performance with respect to changes in cytokine release, oxidative stress, lipid handling, endoplasmic reticulum (ER) stress, and proliferation of macrophages. Using this in vitro approach, we observed that the anti-inflammatory effect of prednisolone was counterbalanced by multiple adverse effects on other key pathways. Conversely, pterostilbene, T0901317 and simvastatin had an overall anti-atherogenic effect on multiple pathways, suggesting their potential for liposomal delivery. CONCLUSION: This dedicated assay setup provides a framework for high-throughput assessment. Further in vivo studies are warranted to determine the predictive value of this macrophage-based screening approach and its potential value in nanomedicinal drug development for cardiovascular patients.


Assuntos
Anti-Inflamatórios/farmacologia , Aterosclerose/tratamento farmacológico , Inflamação/tratamento farmacológico , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Placa Aterosclerótica , Transdução de Sinais/efeitos dos fármacos , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Hidrocarbonetos Fluorados/farmacologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Prednisolona/farmacologia , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Sinvastatina/farmacologia , Estilbenos/farmacologia , Sulfonamidas/farmacologia , Transfecção
13.
BMC Genomics ; 17: 162, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26932821

RESUMO

BACKGROUND: The nuclear orphan receptor Nur77 (NR4A1, TR3, or NGFI-B) has been shown to modulate the inflammatory response of macrophages. To further elucidate the role of Nur77 in macrophage physiology, we compared the transcriptome of bone marrow-derived macrophages (BMM) from wild-type (WT) and Nur77-knockout (KO) mice. RESULTS: In line with previous observations, SDF-1α (CXCL12) was among the most upregulated genes in Nur77-deficient BMM and we demonstrated that Nur77 binds directly to the SDF-1α promoter, resulting in inhibition of SDF-1α expression. The cytokine receptor CX3CR1 was strongly downregulated in Nur77-KO BMM, implying involvement of Nur77 in macrophage tolerance. Ingenuity pathway analyses (IPA) to identify canonical pathways regulation and gene set enrichment analyses (GSEA) revealed a potential role for Nur77 in extracellular matrix homeostasis. Nur77-deficiency increased the collagen content of macrophage extracellular matrix through enhanced expression of several collagen subtypes and diminished matrix metalloproteinase (MMP)-9 activity. IPA upstream regulator analyses discerned the small GTPase Rac1 as a novel regulator of Nur77-mediated gene expression. We identified an inhibitory feedback loop with increased Rac1 activity in Nur77-KO BMM, which may explain the augmented phagocytic activity of these cells. Finally, we predict multiple chronic inflammatory diseases to be influenced by macrophage Nur77 expression. GSEA and IPA associated Nur77 to osteoarthritis, chronic obstructive pulmonary disease, rheumatoid arthritis, psoriasis, and allergic airway inflammatory diseases. CONCLUSIONS: Altogether these data identify Nur77 as a modulator of macrophage function and an interesting target to treat chronic inflammatory disease.


Assuntos
Matriz Extracelular/metabolismo , Tolerância Imunológica , Inflamação/metabolismo , Macrófagos/citologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Fagocitose , Animais , Receptor 1 de Quimiocina CX3C , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Colágeno/metabolismo , Regulação da Expressão Gênica , Homeostase , Inflamação/genética , Macrófagos/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Neuropeptídeos/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Regiões Promotoras Genéticas , Células RAW 264.7 , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Transcriptoma , Proteínas rac1 de Ligação ao GTP/metabolismo
14.
Nanomedicine ; 12(6): 1463-70, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27015770

RESUMO

Atherosclerosis is a lipid-driven inflammatory disease, for which nanomedicinal interventions are under evaluation. Previously, we showed that liposomal nanoparticles loaded with prednisolone (LN-PLP) accumulated in plaque macrophages, however, induced proatherogenic effects in patients. Here, we confirmed in low-density lipoprotein receptor knockout (LDLr(-/-)) mice that LN-PLP accumulates in plaque macrophages. Next, we found that LN-PLP infusions at 10mg/kg for 2weeks enhanced monocyte recruitment to plaques. In follow up, after 6weeks of LN-PLP exposure we observed (i) increased macrophage content, (ii) more advanced plaque stages, and (iii) larger necrotic core sizes. Finally, in vitro studies showed that macrophages become lipotoxic after LN-PLP exposure, exemplified by enhanced lipid loading, ER stress and apoptosis. These findings indicate that liposomal prednisolone may paradoxically accelerate atherosclerosis by promoting macrophage lipotoxicity. Hence, future (nanomedicinal) drug development studies are challenged by the multifactorial nature of atherosclerotic inflammation.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/patologia , Prednisolona/administração & dosagem , Animais , Humanos , Lipossomos , Macrófagos/patologia , Camundongos , Placa Aterosclerótica
15.
Cytokine ; 77: 220-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26427927

RESUMO

Foam cell formation is a crucial event in atherogenesis. While interferon-ß (IFNß) is known to promote atherosclerosis in mice, studies on the role of IFNß on foam cell formation are minimal and conflicting. We therefore extended these studies using both in vitro and in vivo approaches and examined IFNß's function in macrophage foam cell formation. To do so, murine bone marrow-derived macrophages (BMDMs) and human monocyte-derived macrophages were loaded with acLDL overnight, followed by 6h IFNß co-treatment. This increased lipid content as measured by Oil red O staining. We next analyzed the lipid uptake pathways of IFNß-stimulated BMDMs and observed increased endocytosis of DiI-acLDL as compared to controls. These effects were mediated via SR-A, as its gene expression was increased and inhibition of SR-A with Poly(I) blocked the IFNß-induced increase in Oil red O staining and DiI-acLDL endocytosis. The IFNß-induced increase in lipid content was also associated with decreased ApoA1-mediated cholesterol efflux, in response to decreased ABCA1 protein and gene expression. To validate our findings in vivo, LDLR(-/-) mice were put on chow or a high cholesterol diet for 10weeks. 24 and 8h before sacrifice mice were injected with IFNß or PBS, after which thioglycollate-elicited peritoneal macrophages were collected and analyzed. In accordance with the in vitro data, IFNß increased lipid accumulation. In conclusion, our experimental data support the pro-atherogenic role of IFNß, as we show that IFNß promotes macrophage foam cell formation by increasing SR-A-mediated cholesterol influx and decreasing ABCA1-mediated efflux mechanisms.


Assuntos
Colesterol/metabolismo , Células Espumosas/efeitos dos fármacos , Interferon beta/farmacologia , Macrófagos/efeitos dos fármacos , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Western Blotting , Células Cultivadas , Células Espumosas/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/genética , Receptores de LDL/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptores Depuradores Classe A/genética , Receptores Depuradores Classe A/metabolismo
16.
PLoS One ; 10(8): e0133598, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26241646

RESUMO

Nuclear receptor Nur77, also referred to as NR4A1 or TR3, plays an important role in innate and adaptive immunity. Nur77 is crucial in regulating the T helper 1/regulatory T-cell balance, is expressed in macrophages and drives M2 macrophage polarization. In this study we aimed to define the function of Nur77 in inflammatory bowel disease. In wild-type and Nur77-/- mice, colitis development was studied in dextran sodium sulphate (DSS)- and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced models. To understand the underlying mechanism, Nur77 was overexpressed in macrophages and gut epithelial cells. Nur77 protein is expressed in colon tissues from Crohn's disease and Ulcerative colitis patients and colons from colitic mice in inflammatory cells and epithelium. In both mouse colitis models inflammation was increased in Nur77-/- mice. A higher neutrophil influx and enhanced IL-6, MCP-1 and KC production was observed in Nur77-deficient colons after DSS-treatment. TNBS-induced influx of T-cells and inflammatory monocytes into the colon was higher in Nur77-/- mice, along with increased expression of MCP-1, TNFα and IL-6, and decreased Foxp3 RNA expression, compared to wild-type mice. Overexpression of Nur77 in lipopolysaccharide activated RAW macrophages resulted in up-regulated IL-10 and downregulated TNFα, MIF-1 and MCP-1 mRNA expression through NFκB repression. Nur77 also strongly decreased expression of MCP-1, CXCL1, IL-8, MIP-1α and TNFα in gut epithelial Caco-2 cells. Nur77 overexpression suppresses the inflammatory status of both macrophages and gut epithelial cells and together with the in vivo mouse data this supports that Nur77 has a protective function in experimental colitis. These findings may have implications for development of novel targeted treatment strategies regarding inflammatory bowel disease and other inflammatory diseases.


Assuntos
Colite Ulcerativa/metabolismo , Colite/metabolismo , Doença de Crohn/metabolismo , Macrófagos/metabolismo , NF-kappa B/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/imunologia , Animais , Linhagem Celular , Colite/induzido quimicamente , Colite/imunologia , Colite Ulcerativa/patologia , Colo/metabolismo , Colo/patologia , Doença de Crohn/patologia , Citocinas/biossíntese , Citocinas/genética , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Fatores de Transcrição Forkhead/biossíntese , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/deficiência , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Células RAW 264.7 , Ácido Trinitrobenzenossulfônico/toxicidade
17.
Am J Pathol ; 185(4): 1145-55, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25659879

RESUMO

A disintegrin and metalloproteinase domain 10 (ADAM10) is a metalloprotease involved in cleavage of various cell surface molecules, such as adhesion molecules, chemokines, and growth factor receptors. Although we have previously shown an association of ADAM10 expression with atherosclerotic plaque progression, a causal role of ADAM10 in atherosclerosis has not been investigated. Bone marrow from conditional knockout mice lacking Adam10 in the myeloid lineage or from littermate controls was transplanted into lethally irradiated low density lipoprotein receptor Ldlr(-/-) mice on an atherogenic diet. Myeloid Adam10 deficiency did not affect plaque size, but it increased plaque collagen content. Matrix metalloproteinase 9 and 13 expression and matrix metalloproteinase 2 gelatinase activity were significantly impaired in Adam10-deficient macrophages, whereas their capacity to stimulate collagen production was unchanged. Furthermore, relative macrophage content in advanced atherosclerotic lesions was decreased. In vitro, Adam10-deficient macrophages showed reduced migration toward monocyte chemoattractant protein-1 and transmigration through collagen. In addition, Adam10-deficient macrophages displayed increased anti-inflammatory phenotype with elevated IL-10, and reduced production of proinflammatory tumor necrosis factor, IL-12, and nitric oxide in response to lipopolysaccharide. These data suggest a critical role of Adam10 for leukocyte recruitment, inflammatory mediator production, and extracellular matrix degradation. Thereby, myeloid ADAM10 may play a causal role in modulating atherosclerotic plaque stability.


Assuntos
Proteínas ADAM/deficiência , Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/deficiência , Secretases da Proteína Precursora do Amiloide/metabolismo , Inflamação/patologia , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Células Mieloides/metabolismo , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Proteína ADAM10 , Animais , Colágeno/metabolismo , Citocinas/biossíntese , Fibrose , Citometria de Fluxo , Mediadores da Inflamação/metabolismo , Integrases/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Células Mieloides/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Reação em Cadeia da Polimerase , Receptores de LDL/deficiência , Receptores de LDL/metabolismo
18.
Inflamm Bowel Dis ; 20(9): 1487-95, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25029617

RESUMO

BACKGROUND: Inflammatory bowel disease is characterized by chronic intestinal inflammation. Azathioprine and its metabolite 6-mercaptopurine (6-MP) are effective immunosuppressive drugs that are widely used in patients with inflammatory bowel disease. However, established understanding of their immunosuppressive mechanism is limited. Azathioprine and 6-MP have been shown to affect small GTPase Rac1 in T cells and endothelial cells, whereas the effect on macrophages and gut epithelial cells is unknown. METHODS: Macrophages (RAW cells) and gut epithelial cells (Caco-2 cells) were activated by cytokines and the effect on Rac1 signaling was assessed in the presence or absence of 6-MP. RESULTS: Rac1 is activated in macrophages and epithelial cells, and treatment with 6-MP resulted in Rac1 inhibition. In macrophages, interferon-γ induced downstream signaling through c-Jun-N-terminal Kinase (JNK) resulting in inducible nitric oxide synthase (iNOS) expression. iNOS expression was reduced by 6-MP in a Rac1-dependent manner. In epithelial cells, 6-MP efficiently inhibited tumor necrosis factor-α-induced expression of the chemokines CCL2 and interleukin-8, although only interleukin-8 expression was inhibited in a Rac1-dependent manner. In addition, activation of the transcription factor STAT3 was suppressed in a Rac1-dependent fashion by 6-MP, resulting in reduced proliferation of the epithelial cells due to diminished cyclin D1 expression. CONCLUSIONS: These data demonstrate that 6-MP affects macrophages and gut epithelial cells beneficially, in addition to T cells and endothelial cells. Furthermore, mechanistic insight is provided to support development of Rac1-specific inhibitors for clinical use in inflammatory bowel disease.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células Epiteliais/citologia , Trato Gastrointestinal/citologia , Interleucina-8/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Mercaptopurina/farmacologia , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Animais , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Humanos , Imunossupressores/farmacologia , Interleucina-8/genética , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
19.
Infect Immun ; 82(1): 253-64, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24166953

RESUMO

Nuclear receptor Nur77 (NR4A1, TR3, or NGFI-B) has been shown to play an anti-inflammatory role in macrophages, which have a crucial function in defense against peritonitis. The function of Nur77 in Escherichia coli-induced peritoneal sepsis has not yet been investigated. Wild-type and Nur77-knockout mice were inoculated with E. coli, and bacterial outgrowth, cell recruitment, cytokine profiles, and tissue damage were investigated. We found only a minor transient decrease in bacterial loads in lung and liver of Nur77-knockout compared to wild-type mice at 14 h postinfection, yet no changes were found in the peritoneal lavage fluid or blood. No differences in inflammatory cytokine levels or neutrophil/macrophage numbers were observed, and bacterial loads were equal in wild-type and Nur77-knockout mice at 20 h postinfection in all body compartments tested. Also, isolated peritoneal macrophages did not show any differences in cytokine expression patterns in response to E. coli. In endothelial cells, Nur77 strongly downregulated both protein and mRNA expression of claudin-5, VE-cadherin, occludin, ZO-1, and ß-catenin, and accordingly, these genes were upregulated in lungs of Nur77-deficient mice. Functional permeability tests pointed toward a strong role for Nur77 in endothelial barrier function. Indeed, tissue damage in E. coli-induced peritonitis was notably modulated by Nur77; liver necrosis and plasma aspartate aminotransferase (ASAT)/alanine aminotransferase (ALAT) levels were lower in Nur77-knockout mice. These data suggest that Nur77 does not play a role in the host response to E. coli in the peritoneal and blood compartments. However, Nur77 does modulate bacterial influx into the organs via increased vascular permeability, thereby aggravating distant organ damage.


Assuntos
Infecções por Escherichia coli/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/fisiologia , Periodontite/microbiologia , Animais , Carga Bacteriana , Citocinas/metabolismo , Modelos Animais de Doenças , Infecções por Escherichia coli/patologia , Fígado/citologia , Fígado/microbiologia , Pulmão/citologia , Pulmão/microbiologia , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neutrófilos/citologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/deficiência , Periodontite/metabolismo , Periodontite/patologia , Cavidade Peritoneal/microbiologia
20.
Curr Opin Lipidol ; 24(5): 381-5, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24005216

RESUMO

PURPOSE OF REVIEW: To understand chronic inflammatory diseases such as atherosclerosis, we require in-depth knowledge on immune-cell differentiation, function of specific immune-cell subsets and endothelial cell-mediated extravasation. In this review, we summarize a number of very recent observations on the pivotal function of NR4A nuclear receptors in immunity and atherosclerosis. RECENT FINDINGS: NR4A nuclear receptors are involved in negative selection of thymocytes, Treg differentiation and the development of Ly6C monocytes. Nur77 and Nurr1 attenuate atherosclerosis in mice whereas NOR-1 aggravates vascular lesion formation. SUMMARY: These exciting, novel insights on the function of NR4A nuclear receptors in immunity, vascular cells and atherosclerosis will initiate a plethora of studies to understand the underlying molecular mechanisms, which will culminate in the identification of novel NR4A targets to modulate chronic inflammatory disease.


Assuntos
Aterosclerose/imunologia , Células Endoteliais/imunologia , Monócitos/imunologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/imunologia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/imunologia , Linfócitos T Reguladores/imunologia , Animais , Aterosclerose/patologia , Diferenciação Celular/imunologia , Células Endoteliais/patologia , Humanos , Camundongos , Monócitos/patologia , Linfócitos T Reguladores/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...